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Abstract—The dissolved oxygen (DO) concentration has been an important process parameter in the biological
wastewater treatment process (WWTP). In this paper, we propose a nonlinear control scheme to maintain the dissolved
oxygen level of an activated sludge system. Without any linearization or model reduction, it can directly incorporate
the nonlinear DO process model with on-line estimation of the respiration rate (R) and the oxygen transfa).rate (K
Simulation results show that it outperforms a control performance of the PID controller. Since it incorporates the
process disturbance and nonlinearity in the controller design, the suggested method can efficiently deal with the
operating condition changes that occur frequently in the wastewater treatment process.

Key words: Biological Wastewater Treatment Process (WWTP), Dissolved Oxygen (DO) Concentration, Generic Model
Control (GMC), Model-based Control, Nonlinear Process Control, Respiration Rate

INTRODUCTION and compared the novel estimation methods for oxygen transfer
rate and respiration rate and applied a supervisory control algo-
The dissolved oxygen (DO) concentration in a mixed liquor is rithm in the full-scale WWTP.
an important process parameter in the biological wastewater treat- Despite the relatively simple but nonlinear dynamics of the DO
ment process because of the economic reasons and the process jpeocess, DO estimation and DO control may not be sufficiently
formance. The proper DO control can give an improved processatisfied by the operator in the biological treatment process. This
performance and provide an economic incentive to minimize themeans that a good control performance for all the operating condi-
excess oxygen consumption by supplying the necessary air to metibns cannot be expected to be achieved with a conventional linear
the time-varying oxygen demand of the mixed liquor. However, controller.
the principal difficulties in the control of biological process control ~ This paper proposes a new nonlinear control strategy by consid-
are the variability of the kinetic parameters and the limited avail-ering important operating conditions. The key idea of this paper is
ability of on-line information; hence, an adaptive and nonlinear con-to take the oxygen transfer rate and the respiration rate of the DO
troller is the best choice for the biological process control. nonlinear process model into account in the controller design step.
To overcome these problems, several adaptive control strategidor this purpose, we propose the oxygen transfer rate and the res-
have been suggested recently for the DO control in the aeration bairation rate by the Kalman filter algorithm. And then the model-
sin [Holmberg et al., 1989; Carlsson, 1992; Lindberg and Carlssonbased nonlinear controller is designed based on the obtained param-
1996; Lindberg, 1997; Olsson and Newell, 1999]. Also, several metheters.
odologies have been developed for estimation of R(t) emtased
on simple measurements of the DO sensor and airflow rate in the METHODS
real aeration basin. Holmberg et al. [1989] posed a recursive esti-
mation method which added the excitation of the process by in- In the first section, we describe the DO control system in the bio-
cluding a small relay. Carlsson [1993] developed a novel methodogical WWTP. The second subsection introduces an estimator de-
to estimate the respiration rate using a constrained piecewise lineaign method for the oxygen transfer rate and the respiration rate.
model. Lindberg [1997] developed a nonlinear controller which The last subsection illustrates a nonlinear model-based DO control.
estimated the oxygen transfer rate during the identification stepl. General Dissolved Oxygen Control System
Marsili-Libelli and Voggi [1997] introduced and summarized vari-  The concentration of dissolved oxygen (DO) in the mixed liquor
ous estimation methods about the respirometric activities in the bioin biological treatment systems has proved to be an important pro-
process, and Yoo et al. [2001] applied a closed loop identificationcess parameter. The proper DO control can improve the process
and control method to a full-scale coke WWTP. Yoo and Lee [2003]performance, and gives economic incentive which minimizes ex-
compared several process identification methods for DO dynamicsess oxygenation by supplying only the amount of air necessary. In
this paper, we focus on the DO dynamics in the aeration tank, which
To whom correspondence should be addressed. relates a biomass activity to the air supply and the input organic load
E-mail: ChangKyoo.Yoo@biomath.ugent.be according to the mass balance equation:
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tion of biodegradable matter. In fact, the respiration rate is the true
indicator of biologically degradable load. Furthermore, a rapid de-
% Controller |K—— DO, crease of the respiration rate can be used as a warning that toxic

Blower matter has entered the plant. The entry of toxic matter into a plant
causes the microorganisms to slow their activity or die, leading to a
decrease in the respiration rate [Lindberg, 1997].
d 2. Estimation of the Oxygen Transfer Rate and the Respira-
MO -y, () -y0) K AUV y®) RO (@)  tonRate

The estimation of the oxygen transfer ratea[(t)]) and the re-

where y(t) is the DO concentration in the aeration bagi),jythe spiration rate (R(t)) is needed to construct a nonlinear controller for
DO concentration of the input flow,.yis the saturated DO con- controlling the DO concentration more effectively. Several recur-
centration, Q(t) is the influent wastewater flow rate, V is the aeratorsive approaches were proposed in order to estimafa(g] and
volume, Ka(u(t)) is the oxygen transfer rate, u(t) is the airflow rate R(t) from the measurement of DO and airflow rate [Holmberg et
into the aeration tank, and R(t) is the respiration rate. The parameal., 1989; Carlsson, 1993; Marsili-Libelli and Voggi, 1997]. Here
ters, Ka and R(t), vary with time, which causes the DO concentra-we used Lindberg’s method [1997]. A schematic figure of the esti-
tion to vary with time. mator is shown in Fig. 2.

Fig. 1(a) illustrates the general DO control system structure in Because the respiration rate is affected by microbial activity, in-
the wastewater treatment plant. If a DO concentration below thdluent characteristics, influent loads, flow rate etc., it is not possible
set point of DO controller (yis detected, the controller increases to decide its mathematical formulation and specific form, that is, a
the amount of air blown into the aeration tank. When a higher DCkind of stochastic process. The respiration rate in many biological
concentration above the set point is detected, the controller decreasesatment processes which treat domestic wastewater exhibits sinu-
the amount of air to maintain the DO at a specific concentrationsoidal behavior due to large diurnal fluctuations in the flow rate and
Despite the relatively simple dynamics of the DO process, there¢he composition of the feed stream; and the respiration rate in in-
are a number of factors that complicate the control of the DO coneustrial WWTPS shows a step-like behavior. Several models for
centration: influent flow variation, organic load fluctuation, nonlin- modeling the respiration rate as a stochastic process, such as ran-
earity, sensor noises and so on. Daily variations in the influent loaglom walk model, a filtered random walk model, and an integrated
lead to continuous changes in the respiration rate and oxygen traneandom walk model, are suggested [Olsson and Newell, 1999]. In
fer rate, which make the DO dynamics time-varying. This meansthis paper, the respiration rate is modeled as a filtered random walk
that it may be difficult to achieve good control and estimation per-based on a deviation variable,
formance for all operating conditions by using a conventional meth-
od. R(t) = = or

The respiration rate has been selected as a meaningful biological (1=g )(1-fq )
indicator, as it yields the rate at which the microorganisms utilizewhere f is a filter pole between 0.9 and,{) & zero mean white
oxygen in carrying out their metabolic activities. This variable pro- noise, and q is backward shift operator. Here, we consider the res-
vides information about the current state of the biological reactiongpiration rate as a filtered random walk model among stochastic pro-
and can be used in connection with a number of control strategiesesses. The filtered random walk model can give better tracking
to adjust the process operation as stable as possible [Marsili-Libellperformance of the respiration rate than a random walk model in
and Vaggi, 1997]. Estimates of the oxygen transfer rat@iKand the presence of measurement noises [Lindberg, 1997].
the respiration rate R(t) in the biological wastewater treatment plant The exponential oxygen transfer rate modgd, iKan be a good
are needed in order to monitor the biological activity and assess thehoice, because it can be given a similar shape of ghiuiction,
performance of the process control system. In addition, estimateshich is natural in a physical sensor (the oxygen transfer deterio-
of these rates are required to construct a nonlinear controller thatites for high airflows). Further, only two parameters are necessary
controls the DO concentration more effectively. So we need botho estimate and it is easy to invert the unction. An exponential
controller’s performance and estimation performance of key parammodel of the oxygen transfer rate is modeled suggested by Lind-
eters in these biological processes. Knowledge of these variables lizerg [1997],
therefore of interest in both the process diagnosis and the process K a(u(D) =k, (1-e <) )
control. In particular, the respiration rate is the key variable charac- " !
terizing the DO process and the associated removal and degradahere a is a scaling factor andakd k are parameters in the ex-

Fig. 1. Dissolved oxygen control system strategy.
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ponential Ka model. The parameters gfdad k can be measured

during the laboratory batch experiment under an assumption of a

fixed airflow rate gives a fixed 4.
The Kalman filter equations are as follows [Ljung, 1987].

£(t) =y,(t) ~9,(ft —1; Bt 1))
B(t) =F(t —1) +K () e(t)
k() =—EP(ED40)
1+¢"()P(t=1) (1)
P(Y) :Fp(t_l)FT_FP(t—1)¢(t)(,UT(t)P(t—1)FT+R
1+¢"()P(t-1)$(t)

1

10 0 0
F-{01 0 o0 @
00 1+f —f
00 1 0

whereg(t) is the predictor error,(y) is the filtered DO signal, and
y((t) is the predictor. The parameter vedis defined a®=[6=

y(®=f(. x, u, 1.6) @

where Eqg. (7) is a deterministic model, f is a known (nonlinear) func-
tion, y is the process output, X is the state variable, u is the input,
and@is a vector of model parameter. In order to avoid problems
with an unstable predictor, it is assumed that the autonomous sys-
tem y()=f(y, x, 0, t8) is asymptotically stable in the operating re-
gion. GMC is based on solving f in Eq. (7) with respect to input u,
and then it is assumed that u appears directly in the equation of the
derivative of output.

The commonly used state space model for a control affine sys-
tem is given by

x =F(x) +g(x)u ®
y =h(x) ©

Egs. (8) and (9) can be brought into the form of Eq. (7) by in-
troducing the Lie derivativeish =f'(ahvax) abgh=g"(oh/ox)
Then,y =L:h +L;hu is obtained. The requirement that the input

[k, k, R(t) R(t 1) ", ihere thék, anll, are the estimated value appears directly in the model equation for y implies theo

of exponential Ka model, and the respiration ra&ét)
mated value of respiration rate. The covariance matti &4 by

4 diagonal matrix, Rdiag@:, \, ¥, 0) which should have appro-
priate values. The parametgris a small number which reflects

, Is the esti- that is, the relative degree of the system is one. Also, it is assumed

that Eq. (7) has stable zero dynamics. The assumptions of an asymp-
totically stable autonomous model and stable zero dynamics may
impose restrictions on the set of model, that is, it must be restricted

the slow variation in the & parameters. The much faster variation to a set where these assumptions are satisfied.

in the respiration rate is turned into a larger valug. & too small

The desired trajectory used in the GMC is given by

value ofy; may give (a larger) bias in the estimate, since the Kalman
filter will not be able to the follow the variations in the true respira- T =Kalys ~y()] +Kf [y, ~y()]dt=PI

tion rate. On the other hand, a too large valug désults in un- where yis a set point, Kand K are GMC control loop constants,
necessary large variations (due to measurement noise) of the es\ﬂ/hich can be determined from the following equation
mated respiration rate [Lindberg, 1997]. '

The regressap(t) is given by
B0 =h [(yea it ~D)[1-€ ™ kyu(t)e =] -1 0

-1 ~(Kea(W *QVh _
ka0 Qv ® Y ©

where h is a sampling time. The predigdgt)

(10)

2¢; _1
Klszi KZ__

| T

where,& andrt, determine the shape and speed of the desired closed-
loop trajectory. The reference trajectory of Eq. (10) has a pseudo-
second-order response for a step set point change.

Our goal is that the actual process output approaches a set point
with a desired trajectory. Then, combining Egs. (7) and (10) leads
to the following implicit control law, that is, GMC.

1)

h' =
is given by

50t=D =yt =D+ 2L ly, -1 -y, - )

+K al U t=1)][yea —Yi(t —1)] “R(t —1)} (6) fly.x,u,t, ) =Ky (y. =y) +Kf (y.—y)dt

3. Nonlinear Model-based Dissolved Oxygen Control To find the value of the input variable, Eq. (12) is solved with

In this paper, we propose an adaptive model-based DO contrakspect to u. In the GMC, a nonlinear process model can be imbed-
that combines the adaptive estimation of the respiration rate and theed into the controller directly without any linearization. However,
oxygen transfer rate by the Kalman filter algorithm and the funda-there always exists a model parameter mismatch between the pro-
mental dynamics of the DO process. In the present study, the Kakess and process model [Signal and Lee, 1992; Erik, 1996]. Then,
man filter method is used to estimate the respiration rate and there may encounter a problem involving unmeasured state variables
oxygen transfer rate adaptively. And generic model control (GMC)in solving Eq. (12).
is used to utilize the nonlinear dynamics of the DO process in the Therefore, a nonlinear model-based control is introduced in this
control algorithm [Lee and Sullivan, 1988]. In GMC, nonlinear pro- paper in order to correct the process/model mismatch and to esti-
cess models can be imbedded directly into the controller withoutnate the unmeasured state variables. With the available process input
any linearization. GMC is a very simple, robust and nonlinear con-and output measurements, the model-based control updates the esti-
trol algorithm in single-input and single-output (SISO) processes. mated parameter veci@rThen the updated model is used by GMC

The main idea behind GMC is to find values of the manipulatedfor the control input. Fig. 3 shows the structure of the proposed mod-
input variable which forces the model output to follow a desired el-based control scheme. Although the proposed control tuning pa-
trajectory. The considered model is given by the following differen- rameters are constant, the updated model can compensate the pro-
tial equation. cess/model mismatch because of its model-based characteristics.
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Fig. 3. The proposed nonlinear model-based control strategy.

The suggested method for DO control is as follows.
DO Process:

MO QW (1) -y() +K AUl YOI RO (3

DO model:

DAY =Wy, () ~y(0) +Real W 11y, ~y(0] -RE)

dt 14)

Desired trajectory:

Dsell) =i 1y, -y (0] +1. Iy, -y O1t=P

at (15)
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dg(—tt) =-K,e(f) —Kzfoe(t)dt=—P|

e()=x®-y®

Thus, the error signal e(t) approaches zero exponentially. More-
over, it is especially robust to disturbances in the DO process (i.e.,
respiration rate) because it contains the estimated respiration and
oxygen transfer rates in the controller structure.

In general, the oxygen transfer rat@ i known to vary much
more slowly (in a matter of days) than the respiration rate R(t) which
is directly related to the biological activity and hence can vary in a
matter of minutes. So, we can assume that the oxygen transfer rate,
K.a, is constant during the normal operation. If we assymgoK
be non time varying, the estimation procedure can be separated into
two steps [Carlsson, 1993]. In the first step, the nonlinear parame-
ters of the oxygen transfer modelakd k, and the respiration rate
R(t) can be estimated during high excitation of the airflow rate, where
the high excitation of the airflow rate is required in both frequency
and amplitude. The estimation procedure is performed on a rela-
tively short data set, that is, typically a few hundred data points. This
makes it possible to update the model parameters of the exponen-
tial oxygen transfer rate model @nd k) and the respiration rate
R(®). In the second step, which occurs when the estimated parame-
ters in the Ka modelk, and, , have settled, the high excitation of

18)

Here, we made a desired trajectory as a Proportional-Integral corthe airflow rate can be switched off, that is, normal operation of DO

troller (PI) without a state observ&La( u(t) aﬁa) are esti-
mated from the previous mentioned Kalman filter estimation algo-
rithm. Using Eq. (14) and settifgly(t)/dt) =PI , we can derive

the following equation in order to obtain the control input u(t).

_PI+R®) +Q(VV I (t) QY Fn(t)
Ysa "Y(1)

Using a nonlinear modeIA(La(u(t)) =I21(1—exp(—l22u(t)/a))) ,u
(t) can be obtained easily by

_PI*R) QM (i) y(1)
Ki(Ysar ~Y(1))

In Eq. (17), the control input, u(t) is explicitly shown as only a
function of the estimated valuds @(u(t)) &Rft) ) and the mea-
sured process values (Q, y({)(ty; and y,) without any state ob-
server. The control input u(t) has a nonlinear gain and all values
in numerator except Pl are the sum of the bias of steady state ter
and feed-forward term of the respiration rate which estimate the
respiration ratR(t) and adjust the DO controller to compensate
for the effect of the variable respiration rate. Since we can make .
model of the oxygen transfer rate #u(t))) and respiration rate
(R(1) in the short estimation phase, we can easily compute the cor
trol action from Eq. (17). The proposed nonlinear control law has
no offset and robustness against the modeling error since it cor
tains the integral action by the external input in the structure itself
Moreover, the suggested control strategy has a special robustne
to the disturbance of DO process and the respiration rate since
contains the estimated respiration rate in the controller structure
As an ideal case, if the estimated values are equal to the true one
K. a(f)=K,a andR(t) =R(t), the proposed control algorithm makes
the offset free. Combining the control input, Eq. (17) and the DO
dynamics, Eq. (1), gives the following error equation.

K.a(u(9) (16)

u(t) =§[lh[l

2

)

control system is applied. Then, the estimated valuesachhd R
models is used to the nonlinear controller design. Under the closed-
loop control, the respiration rate can be estimated by setting all ele-

Determine identification time and exciting signal

v

Estimate K a(u(¢)) and R(f) by Kalman filtering using Eq. (4)

Control Phase

Choose GMC trajectory parameter (K, K3)

\4
l Measure process values l
l Retrieve and update K;a(?), R(#) by Kalman filtering using Eq. (4) ‘

!
|

Calculate nonlinear control input using Eq. (15)

'

Nonlinear control input, u(f)

Fig. 4. Flowchart of the proposed identification and control algo-
rithm.
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ments in the covariance matrix (P) to reset in the estimation stag¢he time delay was ten times the sampling time, that is, 100 secs.
except for the (3, 3) element which is only related to the respiration In Fig. 5, the estimation performances ghldand R(t) during the
rate; and a tuning parameter for the respiration rate tracking (a largestimation phase are shown. We used the following parameters in
value gives fast but noisy tracking, while a small value gives lesghis paper, f=0.97, £8, 3)=0.1,8(0)=[1 1 0 0} and P(0)=diag(£0

noise but a slow tracking) In Fig. 4, we represent the procedure dfC¢®, 1G, 16). The estimated respiration rate has just a small time
the estimation sequence and the proposed nonlinear control law. delay and the estimated &is close to the true value. The esti-

RESULTS AND DISCUSSION
In this paper, the following DO process is simulated.

O =9y, (1) -y K AUV YO RO (19)

where Q(t)=1,000h, V=630I, y.,=10 mgl!, y,,()=0 mgl, R()=
20+15 sin(6t) mdgm, and Ka(u(t))=5 tan'(20u(t)/1,000) K. The

mated respiration rate can also be useful for the determination of a
suitable DO set point. It is important that the input signal should be
sufficiently exciting, both in amplitude and in frequency to obtain
good estimation result, especially with the measurement noise cor-
rupted data.

Fig. 6 compares the control performances of the PID controller
and the proposed controller. Here, the PID tuning parameters are
tuned appropriately by adjusting the gain of the controllers by Lind-
berg's pole placement tuning rule [Lindberg, 1997]. The tuning pa-

sampling time is 10 seconds and we added the zero mean white maameters of the suggested nonlinear controller are tuned by Lee’s
surement noise. In this simulation, we also considered the time delasgference trajectory shape [Lee and Sulivan, 1988]. In spite of the
that always exists in the real biological treatment process, wheréime-varying behavior of R(t) and & the proposed controller gives
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Fig. 5. Estimation performances of Ka(u(t)) and R(t) using the
Kalman filter. (a) K a (b) Respiration rate.
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ig. 6. Control comparisons of the PID and the proposed method
with a sinusoidal variation of the respiration rate.
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good control performance, as shown in Fig. 6. However, the PID

controller shows somewhat of a tracking error between set point
and DO concentration because the DO dynamics are influenced by
the continuously time-varying influent load and respiration rate.

The second simulation proves the proposed controller’s perfor-
mance when the respiration rate varies in both amplitude and fre-
guency. The respiration rate varies as R(t)=20+15 sin(Gthnaty/
first, R(t)=20+15 sin(12t) migh after 3 hours and R(t)=10+15 sin(3t)
mgi/h after 6 hours. Fig. 7 shows the control performances of the
PID controller and the proposed controller during the several load
changes. The tuning parameters are the same as the previous ex-
ample. In spite of the respiration rate’s variation in both amplitude
and frequency, the proposed controller shows superior control per-
formances to the conventional PID controller. This means that the
suggested nonlinear model-based DO controller can effectively treat
the operating condition changes that frequently break out in the bio-
logical wastewater treatment process.

However, the PID controller shows a large offset since it is a lin-
ear controller and its tuning parameter is fixed. If the linear control-
ler were tuned for high performance during a low load, a slow

—— 8P
8- (a) Proposed
)
£
o]
[a]
Y T T T T T T T T T 1
0 1 2 3 4 5 6 7 8 9 10
Time (h)
—_ b
< 1004 (b) Proposed
= 80 ——PID
3 60
c
= 40
g T
£ 2 A
o
0 0 L T T T T T T T 1 T 1
0 1 2 3 4 5 6 7 8 9 10
Time (h)

Fig. 7. Control comparisons of the PID and the proposed control
with operation range changes.
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closed loop response would be obtained for a high load or vice versay,....{t) : desired dissolve oxygen concentration [ling/

V() : dissolved oxygen concentration of the input flow [Fhg/

CONCLUSION Yy, . setpoint
Y. - Saturated concentration of dissolved oxygen [[ng/
A nonlinear model-based control algorithm for the dissolved oxy-

gen control is proposed. The nonlinear oxygen transfer rate and th@reek Letter
time varying respiration rate are estimated by using the Kalman fil-6  : parameter vector
ter. And then, the suggested idea incorporates the obtained nonlin-
ear DO process model into the controller design directly. From the
simulation results, the proposed controller shows an enhanced con-
trol performance than the PID controller because it includes the norarlsson, B., “On-line Estimation of the Respiration Rate in an Acti-
inear and time varying characteristics explicitly in the controller  vated Sludge Procesé/at. Sci. Tech28, 427 (1993).
design step. In particular, the proposed model-based DO controlletarisson, B., Lindberg, C. F.,, Hasselblad, S. and Xu, S., “On-line Esti-
can efficiently cope with the operating condition changes that occur mation of the Respiration Rate and the Oxygen Transfer Rate at
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